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Abstract. The resistance between two arbitrary lattice sites in infinite three-dimensional triangular and
hexagonal prism lattice networks of equal resistances, that have not been studied before, is computed
by using lattice Green’s function technique. For large separation between lattice points we numerically
calculate the asymptotic value of the resistance for these lattices.

1 Introduction

One of the old traditional analysis methods for computing the resistance is Kirchhoff’s laws [1], which can be applied
in principle to any electric network of resistors, but with increasing the size of the network the problem becomes
challenging task. In last two decades the problem of calculating the resistance of infinite resistor networks attracts
a vast amount of attention in physics, mathematics, and electric engineering literatures as well. Various techniques
have been employed by researchers to study this problem [2–6]. These methods basically involve difference equations
governed by Ohm’s and Kirchhoff’s laws.

In 1999, Atkinson et al. [4] used complex Fourier transforms and generalized the method of Venezian [5] to cubic
and hypercubic lattices in higher dimensions, as well as to triangular and hexagonal (honeycomb) lattices in two
dimensions. In 2000 Cserti [6] presented a method based on the lattice Green’s function to compute the resistance
for infinite d-dimensional hypercubic, rectangular, triangular, and honeycomb lattices of resistors. For the first time
Cserti obtained the recurrence relations for the resistance of an infinite square lattice using the recurrence formulas
for the Green’s functions derived by Morita [7]. Two years later, Cserti et al. [8] established a method based on the
lattice Green’s function to compute the resistance of the perturbed network in which one of the resistors is missing in
the perfect lattice has only one basis.

In 2011 Cserti et al. [9] generalized the lattice Green’s function method [6] for calculating the equivalent resistance
of any infinite periodic lattice structure of resistor networks. Following the approach of refs. [6,8,9], several considerable
works have been presented in the literature [10–26]. In [20], one of us generalized the Green’s function method developed
in [8] to find the two-point resistance on the perturbed uniform tiling in which each unit cell has any number of
lattice sites.

In the case of finite networks, two main methods were established to compute the two-point resistances. The first is
usually called Laplacian approach which is based on finding eigenvalues and eigenvectors of the Laplacian matrix [27].
The Laplacian method was modified for different types of resistor networks [28–30]. The second method is called
the Recursion-Transform method [31], and it is based on the solution of a recurrence relation found by a matrix
transformation of the equations involving the column currents. This method was developed recently to resolve many
resistor networks of various topologies [32–37].

In [38], an explicit formula for two-point resistance in non-symmetric finite networks in terms of the eigenvalues and
mutually orthogonal basis of left- and right-hand eigenvectors of the Laplacian matrix also appeared in the literature.

In the present work, we apply the lattice Green’s function method of refs. [6,9] to infinite resistor prism lattices in
three dimensions (see figs. 1 and 4); namely, we evaluate the two-point resistance on the triangular prism and hexagonal
prism lattices of equal electrical resistors (to the best our knowledge these lattices provide a wealth of examples of
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new resistor networks not considered in the literature). Here, throughout this paper, we think it is convenient to use
the orthogonal Cartesian coordinates system [39] instead of a triangle coordinates system for several reasons such as:

i) It is easier to follow for two-dimensional triangular lattice compared to other coordinate systems.
ii) The integrals we obtained are more suitable for numerical calculations by using Mathematica.
iii) Recurrence formulas for resistances can be derived, but we did not present them in the paper.

The paper is organized as follows: we begin with a brief review of the general formulation [9] to determine the
resistance between two arbitrary lattice points in an infinite periodic lattice of any resistor network (sect. 2). In sect. 3,
we study the resistance for an infinite 3D triangular prism lattice. In sect. 4, we present the types of the resistances
for an infinite 3D hexagonal prism lattice.

2 Formulation of the two-point resistance

In this section, we briefly review the formulation of two-point resistance on a periodic lattice structure of resistor
networks. A detailed formulation can be found in the ref. [9].

Consider an infinite lattice structure that is a uniform tiling of d-dimensional space with identical resistances R.
The lattice points can be represented by the vector r = ℓ1a1 + ℓ2a2 + · · · + ℓdad, where a1,a2, · · · ,ad are the unit
cell vectors in the d-dimensional space and ℓ1, ℓ2, · · · , ℓd are arbitrary integers. If the unit cell contains s lattice points
labeled by α = 1, 2, · · · , s, then denote by {r;α} any lattice point, where r and α specify the unit cell and the lattice
point, and let Uα(r) and Iα(r) be the electric potential and current at point {r;α}, respectively.

According to Kirchhoff’s current and Ohm’s laws, the current Iν(r) entering, from a source outside lattice, the
lattice point {r; ν} in the unit cell can be written as

∑

r′,β

Lνβ(r, r′)Uβ(r′) = −RIν(r), (1)

where Lαβ(r, r′) is a s by s usually called Laplacian matrix of the lattice.
To calculate the resistance Rαβ(r1, r2) between two lattice points {r1;α} and {r2;β}, one connects these points

to the two terminals of an external source and measure the current going through the source while no other lattice
points are connected to external sources. Then, the resistance Rαβ(r1, r2) is given by Ohm’s law:

Rαβ(r1, r2) =
Uα(r1) − Uβ(r2)

I
. (2)

The computation of the two-point resistance Rαβ(r1, r2) is now reduced to solving eq. (1) for Uα(r1) and Uβ(r2)
by using the lattice Green’s function with the current distribution given by

Iν(r) = I (δr,r1
δα,ν − δr,r2

δβ,ν) . (3)

The lattice Green’s function is formally defined as

G = −L−1. (4)

Hence, eq. (1) can be written as

Uμ(r′) = R
∑

ν,r

Gμν(r′, r)Iν(r), (5)

where Gαβ(r′, r) = Gαβ(r′ − r), it is a s by s matrix. Substituting eq. (3) into (5), one obtains

Uμ(r′) = RI [Gμα(r′, r1) − Gμβ(r′, r2)] . (6)

Using eq. (6) in (2) the two-point resistance in terms of lattice Green’s functions can be obtained as

Rαβ(r1, r2) = RI [Gαα(r1, r1) + Gββ(r2, r2) − Gαβ(r1, r2) − Gβα(r2, r1)] . (7)

Now the lattice Green’s function Gαβ(r1, r2) can be given by its Fourier transform Gαβ(k) as

Gαβ(r1, r2) =
Vc

(2π)d

∫

BZ

dkGαβ(k)e−ik·(r2−r1), (8)
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Fig. 1. The resistor network of the three-dimensional triangular prism lattice.

where Vc is the volume of the unit cell and k = (k1, k2, · · · kd) is the wave vector in the d-dimensional Fourier space
(in the reciprocal lattice) and is limited to the first Brillouin zone (BZ) which is a d-dimensional hypercube with sides
k1 = 2π/a1, k2 = 2π/a2 · · · kd = 2π/ad. Thus, eq. (7) can be written as

Rαβ(r1, r2) =
RVc

(2π)d
RI

[

Gαα(k) + Gββ(k) − Gαβ(k)e−ik·(r2−r1) − Gβα(k)eik·(r2−r1)
]

. (9)

By writing r2 − r1 = ℓ1a1 + ℓ2a2 + · · ·+ ℓdad and changing the variables k ·ai (i = 1, 2, · · · , d) with Vc = a1a2 · · · ad,
eqs. (8) and (9) can be simplified to

Gαβ(ℓ1, · · · , ℓd) =

∫ π

−π

dθ1

2π
· · ·

∫ π

−π

dθd

2π
Gαβ(θ1, · · · , θd)e

−i(ℓ1θ1+···+ℓdθd), (10)

Rαβ(ℓ1, · · · , ℓd) = R

∫ π

−π

dθ1

2π
· · ·

∫ π

−π

dθd

2π

{

Gαα(θ1, · · · , θd) + Gββ(θ1, · · · , θd)

− Gαβ(θ1, · · · , θd)e
−i(ℓ1θ1+···+ℓdθd) − Gβα(θ1, · · · , θd)e

i(l1θ1+···+ℓdθd)
}

. (11)

If the unit cell contains only one lattice point (i.e. s = 1 and α = β = 1), then Lαβ and Gαβ are the lattice
Laplacian and the lattice Green’s function (1× 1 matrices) corresponding to the finite-difference representation of the
Laplace operator [6]. In this case the lattice Green’s function and the resistance can be written as [6].

G(ℓ1, · · · , ℓd) =

∫ π

−π

dθ1

2π
· · ·

∫ π

−π

dθd

2π
G(θ1, · · · , θd)e

−i(ℓ1θ1+···+ℓdθd), (12)

R(ℓ1, ℓ2, · · · , ℓd) = 2R [G(0, 0, · · · , 0) − G(ℓ1, ℓ2, · · · , ℓd)] . (13)

3 Three-dimensional triangular prism lattice network

Consider an infinite three-dimensional triangular prism lattice network consisting of identical resistors R as shown in
fig. 1. The bases of the prism are two-dimensional triangular lattices (see fig. 2). Let r = ℓa + mb + nc be the lattice
site: ℓa, mb and nc are (orthogonal coordinate axes) along the x, y and z-axis, respectively, where ℓ + m is an even
integer and n is any integer. If the distance between adjacent nodes on two-dimensional triangular lattices is chosen to
be equal 1, then a and b are 1/2 and

√
3/2, respectively. The unit cell contains only one lattice point and each lattice

point has eight neighbors: ±2a, ±a ± b, ±c.
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Fig. 2. The basal plane (triangular lattices) of the triangular prism lattice with the two perpendicular coordinates ℓa and mb.

Following the same way as in [9] we calculate the two-point resistance on the triangular prism resistor network.
By a combination of Kirchhoff’s current rule and Ohm’s law the current I(r) at lattice site r can be written as

I(r) =
U(r) − U(r + 2a)

R
+

U(r) − U(r − 2a)

R
+

U(r) − U(r + a + b)

R
+

U(r) − U(r − a − b)

R

+
U(r) − U(r + a − b)

R
+

U(r) − U(r − a + b)

R
+

U(r) − U(r + c)

R
+

U(r) − U(r − c)

R
. (14)

The electric potential and current at any site are usually written by their Fourier transforms:

U(r) =
Vc

(2π)3

∫

BZ

dkU(k)eik·r, (15)

I(r) =
Vc

(2π)3

∫

BZ

dkI(k)eik·r, (16)

where Vc = abc is the volume of the unit cell and k = (kx, ky, kz) is the wave vector in the three-dimensional Fourier
space and is limited to the first Brillouin zone which is a rectangular box with sides kx = 2π/a, ky = 2π/b, kz = 2π/c.
Substituting eqs. (15) and (16) into (14) we have

L(k)U(k) = −RI(k), (17)

where L(k) is the Fourier transform of the Laplacian operator L(r) of the triangular prism lattice, given by

L(k) = −8 + 2 cos 2k · a + 4 cos k · a cos k · b + 2 cos k · c. (18)

Inverting L(k) the Fourier transform of the lattice Green’s function G(k) is

G(k) = −L−1(k) =
1

8 − 2 cos 2k · a − 4 cos k · a cos k · b − 2 cos k · c . (19)

The lattice Green’s function G(r) can be given by its Fourier transform as

G(r) =
Vc

(2π)3

∫

BZ

dkG(k)eik·r. (20)

Equation (20) can written as

G(ℓa,mb, nc) =
abc

(2π)3

∫ π/a

−π/a

dkx

∫ π/b

−π/b

dky

∫ π/c

−π/c

dkz
ei(ℓkx+mky+nkz)

8 − 2 cos 2k · a − 4 cos k · a cos k · b − 2 cos k · c . (21)
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Table 1. Numerical values of the resistance R(ℓ, m, n) in units of R in a triangular prism lattice.

ℓ, m, n R(ℓ, m, n)/R ℓ, m, n R(ℓ, m, n)/R

0, 0, 0 0, 0, 0 50, 0, 0 0.357822

0, 0, 1 0.259513 0, 50, 0 0.359726

1, 1, 0 0.246829 0, 0, 50 0.360487

2, 0, 0 0.246829 100, 0, 0 0.360074

1, 1, 1 0.293775 200, 0, 0 0.361199

2, 0, 1 0.293775 500, 0, 0 0.361875

4, 4, 1 0.335369 1000, 0, 0 0.36210

5, 5, 0 0.339645 0, 1000, 0 0.362195

10, 0, 0 0.339645 0, 0, 1000 0.362233

10, 10, 10 0.355211 10000, 0, 0 0.362303

30, 0, 10 0.356516 ∞ 0.362325

By changing the variables kx = θx/a, ky = θy/b and kz = θz/c, eq. (21)can be simplified to

G(ℓ,m, n) =

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

cos ℓθx cos mθy cos nθz

8 − 2 cos 2θx − 4 cos θx cos θy − 2 cos θz
. (22)

The equivalent resistance between the origin and lattice point (ℓ,m, n) in triangular prism lattice is given by eq. (13)

R(ℓ,m, n) = 2R [G(0, 0, 0) − G(ℓ,m, n)] (23)

and substituting eq. (22) into (23) we have

R(ℓ,m, n) = R

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

1 − cos ℓθx cos mθy cos nθz

4 − cos 2θx − 2 cos θx cos θy − cos θz
. (24)

Using the expression in result (24), one can calculate the resistance between the origin and lattice point (ℓ,m, n). As
an example, the resistance between the origin and point (1, 1, 0) is given by

R(1, 1, 0) = R

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

1 − cos θx cos θy

4 − cos 2θx − 2 cos θx cos θy − cos θz
. (25)

Performing the integration over the variable θz by residue theorem and evaluating the others numerically using
Mathematica, we find that R(1, 1, 0) ≈ 0.246829R. As another example, the resistance between the origin and point
(0, 0, 1) is

R(0, 0, 1) = R

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

1 − cos θz

4 − cos 2θx − 2 cos θx cos θy − cos θz
, (26)

which gives to 0.259513. Numerical values for the resistance between the origin and additional points are listed in
table 1.

It is interesting to note that the resistance tends to a finite value as the separation between lattice sites goes to
infinity. This can be shown from Riemann-Lebesque Lemma which states: If f(t) is an integrable function on the
interval [a, b], then

lim
p−→∞

∫ b

a

f(t) cos ptdt. (27)

Hence, from eq. (23) G(ℓ,m, n) −→ 0 and thus, using eq. (24) the asymptotic value of the resistance is

R(ℓ,m, n) −→ 2RG(0, 0, 0), (28)

as any of the ℓ,m, n −→ ∞. The numerical asymptotic value of the resistance can be calculated to be

2RG(0, 0, 0) = 0.362325 · · ·R. (29)

In fig. 3, the numerical values of the resistance in units of R is plotted versus along the z-axis.
From both table 1 and fig. 3 one can see obviously that the resistance approaches rapidly to its asymptotic value

given above.
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Fig. 3. The resistance of units of R along the nc axis for a triangular prism lattice network.

Fig. 4. The resistor network of the three-dimensional hexagonal prism lattice.

4 Three-dimensional hexagonal prism lattice network

In this section, we follow ref. [9] to calculate the two-point resistance in an infinite three-dimensional regular hexagonal
prism lattice. Consider a three-dimensional hexagonal prism lattice of equal resistances R as shown in fig. 4. The bases
are two-dimensional regular hexagonal (honeycomb) lattices (see fig. 5). The unit cell contains two lattice points
labeled by α = A,B. Again let the lattice vector r = ℓa + mb + nc specifies the lattice points, where a, b and c are
the orthogonal unit cell vectors along the x, y and z-axis, respectively, ℓ + m is an even integer and n is any integer.
If the distance between adjacent nodes on two-dimensional honeycomb lattices is chosen to be equal 2, then a and b
are 1 and

√
3, respectively.

Using Kirchhoff’s current law and then Ohm’s law, the currents at lattice points {r;A} and {r;B} in the unit cell
can be written as the finite difference equations:

IA(r) =
UA(r) − UB(r − 2a)

R
+

UA(r) − UB(r + a + b)

R
+

UA(r) − UB(r + a − b)

R

+
UA(r) − UA(r + c)

R
+

UA(r) − UA(r − c)

R
, (30)
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Fig. 5. The basal plane (hexagonal lattices) of the hexagonal prism lattice with the two perpendicular coordinates ℓa and mb.

IB(r) =
UB(r) − UA(r + 2a)

R
+

UB(r) − UA(r − a − b)

R
+

UB(r) − UA(r − a + b)

R

+
UB(r) − UB(r + c)

R
+

UB(r) − UB(r − c)

R
. (31)

The electric potential and current can be given by their Fourier transforms:

Uα(r) =
Vc

(2π)3

∫

BZ

dkUα(k)eik·r , (32)

Iα(r) =
Vc

(2π)3

∫

BZ

dkIα(k)eik·r , (33)

where α = A,B. Using eqs. (32) and (33) into (30) and (31), we have

L(k)

[

UA(k)

UB(k)

]

= −R

[

IA(k)

IB(k)

]

, (34)

where L(k) (2 × 2 matrix) is the Fourier transform the Laplacian matrix of the hexagonal prism lattice, given by

L(k) =

[

−5 + 2 cos k · c e−2ik·a + 2eik·a cos k · b
e2ik·a + 2e−ik·a cos k · b −5 + 2 cos k · c

]

. (35)

Inverting the matrix L(k)and changing the variables θx, θy and θz in eq. (35) by k ·a, k · b and k · c, respectively, the
lattice Green’s function becomes

G(θx, θy, θz) =
1

det L

[

5 − 2 cos θz e−2iθx + 2eiθx cos θy

e2iθx + 2e−iθx cos θy 5 − 2 cos θz

]

, (36)

where det L = 2(12 − 2 cos 3θx cos θy − cos 2θy − 10 cos θz + cos 2θz) is the determinant of the matrix L(θx, θy, θz).
The equivalent resistance Rαβ(ℓ,m, n) between the origin {0;α = A,B} and any node {(ℓ,m, n);β = A,B} can

be calculated from eq. (11) for d = 3,

Rαβ(ℓ,m, n) = R

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

{

Gαα(θx, θy, θz) + Gββ(θx, θy, θz)

− Gαβ(θx, θy, θz)e
−i(ℓθx+mθy+nθz) − Gβα(θx, θy, θz)e

i(ℓθx+mθy+nθz)

}

. (37)
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Table 2. Numerical values of the resistances RAA(ℓ, m, n) and RAB(ℓ, m, n) in units of R in a hexagonal prism lattice.

ℓ, m, n RAA(ℓ, m, n)/R ℓ, m, n RAB(ℓ, m, n)/R

0, 0, 1 0.395256 −2, 0, 0 0.403162

0, 0, 2 0.519258 1, 1, 0 0.403162

0, 2, 0 0.522231 1, 3, 1 0.578202

3, 1, 0 0.522231 −2, 2, 0 0.550135

0, 2, 1 0.543021 1, 1, 1 0.485675

3, 1, 1 0.543021 4, 0, 0 0.550136

3, 3, 1 0.588895 4, 2, 1 0.578202

6, 0, 0 0.585211 1, 1, 3 0.577664

6, 0, 4 0.613063 1, 1, 5 0.610659

9, 3, 0 0.61886 7, 3, 2 0.614015

6, 6, 6 0.634946 10, 0, 0 0.617366

0, 10, 0 0.640337 7, 9, 0 0.636991

12, 12, 0 0.645078 4, 0, 10 0.638054

0, 24, 0 0.653493 100, 0, 0 0.660206

0, 2, 100 0.6622244 1, 1, 100 0.6622243

There are four types of resistances:
A-A type resistance: The resistance between lattice sites {0; = A} and {(ℓ,m, n); = A} is given by

RAA(ℓ,m, n) = R

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

(5 − 2 cos θz)(1 − cos ℓθx cos mθy cos nθz)

12 − 2 cos 3θx cos θy − cos 2θy − 10 cos θz + cos 2θz
. (38)

Like in a simple hexagonal lattice, in a hexagonal prism lattice the two-point resistance RAA(ℓ,m, n) tends to a finite
value (i.e. asymptotic value of 2RGAA(0, 0, 0) = 0.664978 . . . R) as the distance between the lattice sites goes to
infinity.

A-B type resistance: The resistance between the lattice sites {0; = A} and {(ℓ,m, n); = B}:

RAB(ℓ,m, n) = R

∫ π

−π

dθx

2π

∫ π

−π

dθy

2π

∫ π

−π

dθz

2π

× {5 − 2 cos θz − cos[(ℓ + 2)θx + mθy + nθz] − 2 cos θy cos[(ℓ − 1)θx + mθy + nθz]}
12 − 2 cos 3θx cos θy − cos 2θy − 10 cos θz + cos 2θz

. (39)

From the lattice symmetric the other two types of the resistance are

RBB(ℓ,m, n) = RAA(ℓ,m, n), and RBA(ℓ,m, n) = RAB(ℓ,m, n). (40)

In table 2 the numerical values of the resistances RAA(ℓ,m, n) and RAB(ℓ,m, n) were calculated by Mathematica.
It can also be observed, from table 2, that the resistances RAA(ℓ,m, n) and RAB(ℓ,m, n) are approximately equal

and tend rapidly to the asymptotic value (0.664978 . . . R) as the separation between lattice sites increases.
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